
Dynamic Binary
Instrumentation-based

Framework for Malware Defense

Najwa Aaraj†, Anand Raghunathan‡, and Niraj K. Jha†

† Department of Electrical Engineering, Princeton University,

Princeton, NJ 08544, USA

‡ NEC Labs America, Princeton, NJ 08540, USA

Outline

 Motivation

 Proposed framework

 Framework details

 Testing environment

 Real environment

 Experimental evaluation

 Related work

Princeton University DIMVA 08 presentation

Motivation

 Malware defense is a primary concern in
information security
 Steady increase in the prevalence and diversity

of malware

 Escalating financial, time, and productivity losses

 Minor enhancements to current approaches are
unlikely to succeed
 Increasing sophistication in techniques used by virus

writers

 Emergence of zero-day and zero-hour attacks

 Recent advances in virtualization allows the
implementation of isolated environments

Princeton University DIMVA 08 presentation

Motivation (Contd.)

 Advances in analysis techniques such as dynamic
binary instrumentation (DBI)
 DBI injects instrumentation code that executes as part of

a normal instruction stream

 Instrumentation code allows the observation of an
application’s behavior

 “Rather than considering what may occur, DBI has the
benefit of operating on what actually does occur”

Princeton University DIMVA 08 presentation

Ability to test untrusted code in an isolated environment
without corrupting a “live” environment, under DBI

Outline

 Motivation

 Proposed framework

 Framework details
 Testing environment

 Real environment

 Experimental evaluation

 Related work

Princeton University DIMVA 08 presentation

Proposed Framework

 Execute an untrusted program in a Testing environment

 Use DBI to collect specific information

 Build execution traces in the form of a hybrid model:
dynamic control and data flow in terms of regular
expressions, Rk’s, and data invariants

 Rk’s alphabet: ∑ = {BB1, …, BBn}, where BBj captures
data relevant to detecting malicious behavior

 Subject RU, a recursive union of generated Rk’s, to post-
execution security policies

 Based on policy application results, data invariants, and
program properties, derive monitoring model M

 Move M into a Real (real-user) environment, and use it
as a monitoring model, along with a continuous learning
process

Princeton University DIMVA 08 presentation

Princeton University DIMVA 08 presentation

Outline

 Motivation

 Proposed framework

 Framework details

 Testing environment

 Real environment

 Experimental evaluation

 Related work

Princeton University DIMVA 08 presentation

 Execution trace generation
 Step built on top of DBI tool Pin

 Control and data information generated to check
against security policies

 Regular expression generation
 Each execution trace transformed into regular

expression, Rk

 Rk’s alphabet: ∑ = {BB1, …, BBn}

 BBj is a one-to-one mapping to a basic block in the
execution trace

 BBj contains data components, di’s, if instruction Ii in

basic block executes action Ai

 di’s can reveal malicious behavior when they assume
specific values

Princeton University DIMVA 08 presentation

Execution Traces and Regular Expressions

 Completeness of testing procedure depends on
number of exposed paths

 Each application tested under multiple automatically-
and manually-generated user inputs

 Recursive union of Rk’s performed in order to
generate RU

Princeton University DIMVA 08 presentation

Execution Trace Union

 Data invariants
 Refer to properties assumed by the di’s in each BBj

 Invariant categories:

 Acceptable or unacceptable constant values

 Acceptable or unacceptable range limits

 Acceptable or unacceptable value sets

 Acceptable or unacceptable functional invariants

 Data fields, di’s, over which invariants are defined:

 Arguments of system calls that involve the modification
of a system file or directory

 Arguments of the “exec” function or any variant thereof

 Arguments of symbolic and hard links

 Size and address range of memory access

Princeton University DIMVA 08 presentation

Generation of Data Invariants

 Updating data invariants:
 Single or multiple invariant types for all di’s in each BBj

 Observe value of all di’s in each execution trace

 Start with strictest invariant form (invariant of constant type)

 Progressively relax stored invariants for each di

Princeton University DIMVA 08 presentation

Generation of Data Invariants
(Contd.)

 Security policy, Pi:
 Pi specifies fundamental traits of malicious behaviors

 Each Pi is a translation of a high-level language
specification of a series of events

 If events are executed in a specific sequence, they
outline a security violation

 Malicious behaviors detected by performing RU ∑(Pi)

 Example of Pi

A malicious modification of an executable, detected post-
execution, implies a security violation

Princeton University DIMVA 08 presentation

Security Policies and Malicious
Behavior Detection

 Malicious modifications include:

1. File appending, pre-pending, overwriting with virus content

2. Overwriting executable cavity blocks (e.g., CC-00-99 blocks)

3. Code regeneration and integration of virus within executable

4. Executable modifications to incorrect header sizes

5. Executable modifications to multiple headers

6. Executable modifications to headers incompatible with their
respective sections

7. Modifications of control transfer to point to malicious code

8. Modifications of function entry points to point to malicious
code (API hooking)

9. Executable entry point obfuscations

10. Modifications of Thread Local Storage (TLS) table

11. Modifications to /proc/pid/exe

Princeton University DIMVA 08 presentation

Security Policies and Malicious
Behavior Detection (Contd.)

 Generation of behavioral model, M
 M is composed of a reduced set of BBi blocks

 M embeds permissible or non-permissible real-time
behavior

 Program execution run-time monitored against M

 Blocks included in M

 Anomaly-initiating (AI) blocks

 Anomaly-dependent (AD) blocks

 Anomaly-concluding (AC) blocks

 Conditional blocks

 Data invariants and flags are added to each block in M
to instruct an inline monitor what to do at run-time

Princeton University DIMVA 08 presentation

Behavioral Model Generation

Rk

Example: Deriving M

BB1

BBi

BBk

BBk’

BB

BB ’

BBl

b1

b2

b3

Matching blocks

Conditional block

Matching blocks

Matching blocks

BB1

BBi

BB

BBl

AI block
1. Block address
2. Data invariants

Conditional block
1. Block address
2. Condition exit point
3. Successor blocks

AD block
1. Block address
2. Data invariants

AC block
1. Block address
2. Data invariants

Pi M

Princeton University DIMVA 08 presentation

Outline

 Motivation

 Proposed framework

 Framework details

 Testing environment

 Real environment

 Experimental evaluation

 Related work

Princeton University DIMVA 08 presentation

 Run-time monitoring and on-line prevention of
malicious code

 Composed of two parts:
 Check instrumented basic blocks against blocks in

behavioral model M

 Check observed data flow against invariants and flags
embedded in M’s blocks

 Apply conservative security policies on executed paths
not observed in the Testing environment

Framework Details:

Real Environment

Princeton University DIMVA 08 presentation

Outline

 Motivation

 Proposed framework

 Framework details

 Testing environment

 Real environment

 Evaluation results

 Conclusion

Princeton University DIMVA 08 presentation

 Experimental set-up
 Prototype on both Linux and Windows-XP operating

systems

 Linux operating system:

 Testing and Real environments implemented as two Xen
virtual domains

 Windows-XP operating system:

 Testing and Real environments implemented as a custom-
installed VMWare virtual Windows-XP operating system image

 Experiments with 72 real-world Linux viruses and 45
Windows viruses

 Also obfuscated versions of available viruses

Evaluation Results

Princeton University DIMVA 08 presentation

 Virus detection in the Testing environment:
 Original and obfuscated virus detection rate = 98.59%

(Linux), 95.56% (Windows XP)

 Best commercial antivirus tool:

 Detected original viruses = 97.22% (Linux), 95.23%
(Windows-XP)

 Detected obfuscated viruses = 50.00% (Linux), 57.14%
(Windows-XP)

 False negatives = 1.41% (Linux), 4.44% (Windows XP)

 Malicious effects not specified in security policies

 False positives = 0% (benign programs with behavior

resembling that of computer viruses)

Princeton University DIMVA 08 presentation

Evaluation Results (Contd.)

 Virus detection in the Real environment:
 Monitoring against behavioral model halts malicious

execution in the Real environment

 Restrictive policies applied 6.8% of the time (i.e., new
paths exercised 6.8% of the time)

 Execution time effects:
 Execution time increases by 26.81X (Linux) and 30.35X

(Windows-XP) in the Testing environment

 Does not impose severe limitations on the approach

 Offline malicious code detection, transparently to the user

 Execution time increases by 1.20X (Linux) and 1.31X
(Windows-XP) in the Real environment

Princeton University DIMVA 08 presentation

Evaluation Results (Contd.)

Outline

 Motivation

 Proposed framework

 Framework details

 Testing environment

 Real environment

 Evaluation results

 Conclusion

Princeton University DIMVA 08 presentation

 Current techniques fall short of meeting dramatically
increasing challenges of malware threats

 New defense mechanism against malware introduced

 Described system successfully detected a high
percentage of various malicious behaviors

 Acceptable penalty in the real user environment

 Approach depends on the accuracy of the security
policies used

Conclusion

Princeton University DIMVA 08 presentation

Thank you!

